What is Renormalization?

Peter Lepage

Cornell University

February 2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A History (of Sorts)

An example:

$$\frac{g_e}{2} = 1 + \frac{\alpha_0}{2\pi} + \infty \alpha_0^2 + \infty^2 \alpha_0^3 + \cdots$$

but

$$\alpha_0 = \frac{\alpha}{1 - \infty \alpha - \infty^2 \alpha^2 - \cdots}$$

$$= \alpha (1 + \infty \alpha + \cdots)$$

Taylor expansion in powers of $\infty \alpha$.

implies

$$\frac{g_e}{2} = 1.000579826087...$$

(experiment \Rightarrow 1.000579826087...)

An example:

$$\frac{g_e}{2} = 1 + \frac{\alpha_0}{2\pi} + \infty \alpha_0^2 + \infty^2 \alpha_0^3 + \cdots$$

but

$$\alpha_0 = \frac{\alpha}{1 - \alpha \alpha - \alpha^2 \alpha^2 - \cdots}$$

$$= \alpha (1 + \infty \alpha + \cdots)$$

Taylor expansion in powers of $\infty \alpha$.

implies

$$\frac{g_e}{2} = 1.000579826087...$$

(experiment \Rightarrow 1.000579826087...)

$$\begin{split} & f_{1}^{(2)} \int_{-\infty}^{\infty} e^{-\pi i t} \left[-4d - 2(t_{1} - \frac{4d - 2}{2}) c_{1} \right] & (b.124) \\ & s \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\pi i t} \left(-4d - 2(t_{1} - \frac{4d - 2}{2}) c_{1} \right) & (b.124) \\ & \text{Is due a processitie of patience comparing } \\ & \text{def}^{(2)} \int_{-\infty}^{\infty} e^{-\pi i t} (a - 4s + \frac{2(t_{1} - t_{1})(a - 1)(a - 1)}{2t_{2}^{(2)}} & (b.124) \\ & + 4s - \left[(b^{2} + (1 - t_{2})(a + 1)(a - 1) + \frac{2(t_{1} - t_{1})(t_{2} - a - 1)}{2t_{2}^{(2)}} \\ & + \frac{4s}{2t_{2}} \left[(b^{2} + (1 - t_{2})(a + 1)(a + 1) + \frac{2(t_{1} - t_{1})(t_{2} - a - 1)}{2t_{2}^{(2)}} \\ & + \frac{4s}{2t_{2}} \left[(b + (1 - t_{2})(a + 1)(a + 1) + \frac{2(t_{1} - t_{1})(t_{2} - a - 1)}{2t_{2}^{(2)}} \right] \\ & + \frac{4s}{2t_{2}} \left[(b + (1 - t_{2})(a + 1)(a + 1)(a + 1)(a + 1) + \frac{2(t_{1} - t_{1})(t_{2} - a - 1)}{2t_{2}^{(2)}} \right] \\ & + 2s \left[\int_{-\infty}^{\infty} dt_{1} \int_{-\infty}^{\infty} dt_{1} \int_{-\infty}^{\infty} dt_{2} \int_{-\infty}^{\infty} dt_{1} \int_{-\infty}^{\infty} d$$

- **Q.** Why is QED renormalizable?
- A1. Only thing we can make sense of?
- A2. New axiom of nature:

"All physical field theories are renormalizable!?"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $\Rightarrow SU_2 \times U_1 \text{ weak interactions} \\\Rightarrow SU_3 \text{ strong interactions} \\\Rightarrow \dots$

A3. Or...

- Axiom is unnecessary!
- Probably no current theory that is exactly renormalizable!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The Idea

Quantum Electrodynamics

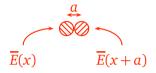
 $\mathbf{E}(\mathbf{x}, t) =$ quantum mechanical operator

⇒ Measurements of E fluctuate from measurement to measurment.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 \Rightarrow **E**(**x**, *t*) fluctuates from point to point.

Eg) Electric field averaged over probe size *a*:

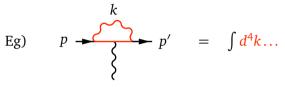


$$\left\langle \left(\overline{E}(x) - \overline{E}(x+a)\right)^2 \right\rangle \to \frac{1}{a^4} \text{ as } a \to 0$$

 \Rightarrow **E**(**x**, *t*) is infinitely rough at short distances! Derivatives??

⇒ Quantum field theories have structure at arbitrarily short distances! Problem?

Does it matter?



- \Rightarrow Integral diverges from $k \rightarrow \infty$ states.
- $\Rightarrow k \rightarrow \infty$ states infinitely important?
- ⇒ Need to understand string/M theory (or...?) in order to calculate anything?? Disaster???

(日) (母) (日) (日) (日) (日) (日)

UV Cutoff

- Introduce UV cutoff: omit all states with $k > \Lambda$ from theory.
- Choose $\Lambda \gg p$ where

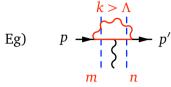
$$p =$$
 typical momentum in process of interest,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

but $\Lambda \not\rightarrow \infty !!$

• Fixes infinities, but ...

What is left out?



 $p' \qquad k > \Lambda \gg p, p' \Rightarrow \text{states } m, n \text{ far}$ off shell ($\Delta E \approx \Lambda$).

(日) (母) (日) (日) (日) (日) (日)

 \Rightarrow *m*, *n* very shortlived (uncertainty principle):

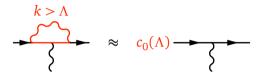
$$\Delta t \approx \frac{1}{\Delta E} \approx \frac{1}{\Lambda}.$$

 \Rightarrow Interaction occurs over very small region:

$$\Delta x \approx \frac{1}{\Lambda} \ll \frac{1}{p}.$$

⇒ Interactions effectively local compared to $\lambda \approx 1/p$.

⇒ Can mimic piece of theory excluded by cutoff with new local interaction:



 \Rightarrow Add $k > \Lambda$ physics back in by adding

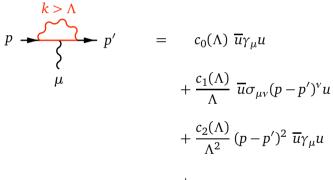
 $\delta \mathscr{L} \equiv \underline{c_0(\Lambda)} \, \overline{\psi} \, \cancel{A} \psi$

to the cutoff Lagrangian (much simpler)!

N.B. $\mathscr{L}^{(\Lambda)} + \delta \mathscr{L}$ then has interaction $e(\Lambda) \overline{\psi} \mathscr{A} \psi$ where $e(\Lambda) \equiv e_0 + c_0(\Lambda) =$ "running coupling."

More Accuracy

Taylor expand in p/Λ , p'/Λ :



+ ...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 \Rightarrow Add more corrections to $\mathscr{L}^{(\Lambda)}$:

$$\frac{c_1(\Lambda)}{\Lambda} \quad \overline{\psi} \sigma_{\mu\nu} F^{\mu\nu} \psi \quad \text{for } p/\Lambda$$
$$\frac{c_2(\Lambda)}{2\Lambda^2} \quad \overline{\psi} i \partial_{\mu} F^{\mu\nu} \psi \quad \text{for } (p/\Lambda)^2$$

:

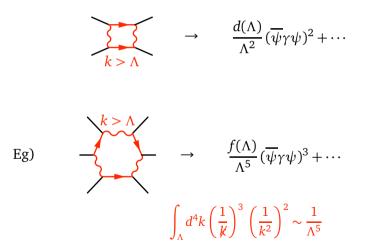
N.B.

- Operators all local \equiv polynomial in ψ , A_{μ} , and ∂_{μ} (Taylor expansion!).
- Infinitely many operators but only need first few since

$$\frac{p}{\Lambda} \ll 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Only other amplitude important in order $1/\Lambda^2$ is



Note:

- Short-distance physics has a strong impact on long-distance physics. (c.f., UV divergences.)
- All we need to know about short distances is summarized in a finite number (determined by desired accuracy) of couplings—c₁(Λ), c₂(Λ), e(Λ), m(Λ)...—for the cutoff theory. (c.f., multipole expansion.)
- Corrections non-renormalizable, but no infinities because cutoff $\Lambda \not\rightarrow \infty$.

(日) (母) (日) (日) (日) (日) (日)

 Form of δℒ's is independent of the dynamics for k > Λ! Only c₁(Λ), c₂(Λ)... care about details at k > Λ.

⇒ Don't need to understand gravity, string/M theory...;
 the couplings parameterize our ignorance, and can be measured experimentally.

・ロト・日本・日本・日本・日本

Summary: Renormalization Theory

- UV cutoff \Rightarrow omit $k > \Lambda$ states
 - \Rightarrow no infinities
 - \Rightarrow no string/M theory needed!
- Add local universal correction terms, with theory-specific couplings, to $\mathscr{L}^{(\Lambda)}$ to mimic effects of $k > \Lambda$ physics.
- Only a finite number of correction terms needed for given accuracy, $(p/\Lambda)^n$.

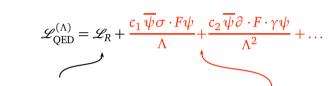
(日) (母) (日) (日) (日) (日) (日)

 \Rightarrow Arbitrary precision with finite Λ !

Applications and Illustrations

Why is QED renormalizable?

QED = low-energy approximation to complex super-theory (strings? branes? SUSY?) with threshold Λ .



"Renormalizable" theory.

⇒

 Λ is boundary between old and new physics.

Cutoff restricts theory to region of validity.

Due to new dynamics at $k > \Lambda$.

Terms really there, but only affect results in order $p/\Lambda \ll 1$.

 \Rightarrow Theory *appears* to be renormalizable!

Theorem

Very low-energy approximations to arbitrary high-energy dynamics can be described by renormalizable theories.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

How renormalizable is QED?

Look for $1/\Lambda$ terms by

1. $p \approx \Lambda$ experiments	\Rightarrow	$\mathscr{O}(1)$ effects but
		high cost (LHC).

2. $p \approx m$ experiments $\Rightarrow \mathcal{O}(1)$ cost but tiny effects $(g_e - 2)$.

Eg) QED \Rightarrow electron's mag. moment to $\delta \mu / \mu \approx 4 \times 10^{-12}$

- $(c/\Lambda) \overline{\psi} \sigma \cdot F \psi$ with c of $\mathscr{O}(1) \Rightarrow \delta \mu / \mu \approx m / \Lambda$ $\Rightarrow \Lambda > 10^8 \text{ GeV}!$
- But chiral symmetry $\Rightarrow c = \mathcal{O}(m/\Lambda)$ $\Rightarrow \Lambda > 10^3 \text{ GeV}.$

How renormalizable is QED?

Look for $1/\Lambda$ terms by

1. $p \approx \Lambda$ experiments	\Rightarrow	$\mathscr{O}(1)$ effects but
		high cost (LHC).

2. $p \approx m$ experiments $\Rightarrow \mathcal{O}(1)$ cost but tiny effects $(g_e - 2)$.

Eg) QED \Rightarrow electron's mag. moment to $\delta \mu / \mu \approx 4 \times 10^{-12}$

- $(c/\Lambda) \overline{\psi} \sigma \cdot F \psi$ with c of $\mathscr{O}(1) \Rightarrow \delta \mu / \mu \approx m / \Lambda$ $\Rightarrow \Lambda > 10^8 \text{ GeV!}$
- But chiral symmetry $\Rightarrow c = \mathcal{O}(m/\Lambda)$ $\Rightarrow \Lambda > 10^3 \text{ GeV.}$

Proton QED?

Experiment $\Rightarrow \delta \mu / \mu = \mathcal{O}(1)$

$$\Rightarrow m_p/\Lambda = \mathcal{O}(1)$$

 $\Rightarrow \Lambda = \mathcal{O}(m_p)$ for new physics.

Two consequences:

- Proton QED useless for p = 𝒪(m_p) since δℒs of all orders in p/Λ important. (Need QCD!)
- For *p* ≪ *m_p* (eg, atoms) proton QED can be made arbitrarily accurate by adding δℒs. (Don't need/want QCD!)

Atomic QED?

For H, Ps...

$$\text{Prob.}(p_e > m_e) \sim \alpha^5$$

- \Rightarrow Atoms very non-relativistic.
- \Rightarrow Choosing $\Lambda \approx m_e$ okay.
- ⇒ Can use non-relativistic dynamics since $p_e > m_e$ states omitted.

◆□▶ ◆課▶ ◆理▶ ◆理▶ = 逆 - のへで

 $QED \rightarrow NRQED$

$$\begin{aligned} \mathscr{L}_{\text{NRQED}}^{(\Lambda)} &= \psi^{\dagger} \left\{ i\partial_{t} - e\phi + \frac{\mathbf{D}^{2}}{2m} & \text{Schrödinger Theory.} \right. \\ &- c_{1} \frac{e}{2m} \sigma \cdot \mathbf{B} & \text{Relativistic corrections} \\ &- c_{2} \frac{e}{8m^{2}} \nabla \cdot \mathbf{E} & \downarrow \\ &+ c_{3} \frac{ie}{8m^{2}} \left\{ \mathbf{E} \times, \mathbf{D} \right\} \cdot \sigma \\ &- \frac{\mathbf{D}^{4}}{8m^{3}} \right\} \psi + \frac{d}{m^{2}} \psi^{\dagger} \sigma \psi \cdot \psi^{\dagger} \sigma \psi + \cdots \end{aligned}$$

 $\begin{array}{ll} e, \ m, \ c_1, \ c_2 \dots \\ \text{chosen correctly} \end{array} \Rightarrow \begin{array}{l} \mathscr{L}_{\text{NRQED}} \equiv \mathscr{L}_{\text{QED}} \\ \text{for } p \ll m. \end{array}$

Origin of W^{\pm}/Z^0 **mass?**

- Fermi Theory = (contact interaction).
 - \Rightarrow Non-renormalizable with $\Lambda \approx 100$ GeV.
 - \Rightarrow New physics ≈ 100 Gev: W^{\pm} and Z^{0} .
- Minimal theory of W^{\pm}/Z^0 = (Yang Mills + mass term).

 \Rightarrow Non-renormalizable with

$$\Lambda \approx \frac{M_Z}{\sqrt{\alpha}} \approx 1 \text{ TeV}$$

(日) (日) (日) (日) (日) (日) (日)

 \Rightarrow Must see new physics by \approx few TeV (\Rightarrow LHC).

Light Higgs?

• Theory with light Higgs particle ($m \ll 1$ TeV) renormalizable but...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- unnatural unless cut off at $\Lambda \approx 1$ TeV.
- \Rightarrow New physics anyway!

Masses

Scale of couplings in $\mathscr{L}^{(\Lambda)}$ is set by Λ (or higher).

- \Rightarrow Bare masses (in lagrangian) = $\mathcal{O}(\Lambda)$.
- ⇒ Physical masses = $\mathcal{O}(\Lambda)$ barring miraculous (ie, unnatural) cancellation.

Theorem

If a particle has $m < 10^{19}$ GeV, there has to be a reason (symmetry): eg,

gauge symmetry \rightarrow spin 1 chiral symmetry \rightarrow spin 1/2

Conclusion

- Renormalizability is not miraculous approximate renormalizability a consequence of low-energy approximation.
- Important question is not "Is this theory renormalizable?" but rather "To what extent is this theory renormalizable?".
 - ◇ More renorm'ble \Rightarrow larger range of validity (usually).
 - Corrections = model-indep. parameterization of new physics.
- For fundamental theories, "naturalness" is more important
 ⇒ symmetries are central.
- Theorists don't have to apologize for renormalization any more; it is a powerful tool!